伯明翰大学(University of Birmingham),始建于1825年,是位于英国第二大城市伯明翰的世界百强名校,英国老牌名校。于1900年获得维多利亚女王授予的皇家特许状,是英国著名的六所“红砖大学”中的首位成员,英国12所精英大学之一。同时也是英国常春藤联盟“罗素大学集团”核心成员,M5大学联盟成员,国际大学组织“Universitas 21”创始成员,中英大学工程教育与研究联盟成员。
想要出国访问学习的小伙伴看过来啦,英国伯明翰大学在生物化学细胞生物学/发展、分子生物学、免疫学方向正在招收访问学者、博士后!51访学网小编每周定时更新最新的访学招聘信息,感谢关注51访学。
Developing Novel Therapies to PreventAtherosclerosi
About the Project Background :
There is intense interest in identifying the genes that predispose to the development of atherosclerosis. We recently carried out an expression analysis of human tissue using microarrays that identified several candidate genes.
Generating knockout mice and crossing them to apoE knockout mice followed by placing the double knockout mice on a high fat diet confirmed that at least two of the genes strongly promote atherosclerosis.
The aim of this project is to examine whether blocking of these genes using several molecular approaches can prevent development of the atherosclerotic plaques in mice.
Hypothesis :
That our novel genes are major promoters of atherosclerosis and that blocking their activity can prevent the development of plaques in ApoE knockout mice.
Experimental Methods and Research Plan
Experimental Methods to be learned in the project:
Basic molecular biology, DNA cloning, protein expression, gene expression analysis using microarrays, mouse models of disease, genetic alteration of mice using CRISPR, mouse pathology, histochemical tissue analysis.
Further validation of the pro-atherogenic role of the new genes.
We will examine atherosclerotic lesions in total aortas for increased contractile VSMC markers in the tissues of the knockout mice by immunohistochemistry and gene expression array (Agilent) to understand the mechanism by which these genes promote atherosclerosis.
These studies will be complemented by analysis of human atherosclerotic plaque tissue.
We will examine atherosclerosis in a second in house complementary animal model involving implantation of a shear stress modifying cast around the carotid artery to generate atherosclerotic lesions in the carotid artery by modification of blood flow and shear stress.
Lesions will be examined for expression of contractile and leukocyte (e.g. CD68, macrophage) markers by immunohistochemistry, FACS analysis and gene expression arrays (Agilent).
Identification of functional regions of the genes involved in binding to their receptors .
We will identify the critical regions of interaction between our genes and their receptors by protein expression of fragments and Far Western analysis.
Studies will be backed up by immunoprecipitation, FACS analysis and BiaCore studies.
Finally, we will edit out the critical receptor binding regions of the genes using CRISPR in mice and back cross these genetically modified mice with the ApoE knockout mice.
Does disruption of the gene- cognate ligand interaction block atherosclerosis:
1. Antibodies.
We will first test in simple models of acute inflammation such as peritonitis, for example, leukocyte recruitment (neutrophils and monocytes) following challenge with zymosan.
We have developed and characterised antibodies that block the interaction between our genes and their cognate receptors.
Preliminary evidence suggests that one particular antibody blocks plaque formation (Bicknell, Rainger et al. unpublished).
Antibodies are available for the other genes and these will be screened for blocking activity first and if so then biological activity after.
2. Peptide antagonists.
The peptide corresponding to the binding region of the ligand has been shown to block angiogenesis in vivo and will be studied in the athero-prone mice.
Biologically active peptides can be used as models to develop drugs and this will be carried out with experts in the Pharmacy Department of the Medical School.
3. Vaccination.
We have shown that powerful vaccination strategies can break tolerance to our genes and we plan to study this further in terms of vaccine composition and adjuvants to maximise the immune response. These studies could ultimately lead to a long term therapy for people pre-disposed to atherosclerosis.
Expected outcomes and impact
There are at least two opportunities for high impact publications arising from this work. The end stage data here would be to show that vaccination against our genes protects from plaque formation.
Person Specification
Applicants should have a strong background in Biological Sciences, and ideally a background in Biochemistry.
They should have a commitment to research into Cardiovascular Disease and hold or realistically expect to obtain at least an Upper Second Class Honours Degree in a relevant subject.
Please apply please complete the application form at https://www.birmingham.ac.uk/schools/mds-graduate-school/scholarships/mrc-impact/index.aspx
If you have any questions or would like to find out more about IMPACT, please get in touch.
Email us at mrc-impact@contacts.bham.ac.uk
51访学网专注国外访问学者申请服务,已积累不计其数的成功访学案例,如麻省理工学院、哈佛大学、约翰霍普金斯大学、安德森癌症中心、梅奥诊所、麻省总医院、布莱根妇女医院、JHU医院、克利夫兰诊所等顶尖大学及医疗中心访学案例举不胜举。 因此,如果你对访学有所兴趣不妨试一下。希望我们能实现您访学的梦想!更多访学相关问题,请添加51访学专业咨询顾问于老师微信:woyaofangxue